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RESUMO

Lopes, A.A Análise comparativa de redes profundas para reconhecimento
automático de fala em português. 2022. 51p. Monografia (MBA em Inteligência
Artificial e Big Data) - Instituto de Ciências Matemáticas e de Computação, Universidade
de São Paulo, São Carlos, 2022.

Reconhecimento automático de fala é um processo que visa gerar uma saída em texto a
partir de uma entrada em áudio. Mecanismos de inteligência artificial tem sido empregados
de forma efetiva como soluções para esta tarefa, com diferentes abordagens baseadas em
redes profundas. Wav2Vec2 é uma arquitetura fundamentada nos conceitos de mecanismos
de atenção e Transformers, enquanto DeepSpeech2/CoquiSTT é construída usando redes
recorrentes, LSTM e GRU. Contudo, essas arquiteturas foram projetadas e validadas inici-
almente na língua inglesa. Sendo assim, torna-se pertinente a avaliação dessas arquiteturas
para dados em língua portuguesa. Para essa avaliação foi utilizado um conjunto de dados
público, Common Voice, e outro particular, coletado e catalogado manualmente. De forma
geral, Wav2Vec2 superou a performance da arquitetura DeepSpeech2/CoquiSTT em todos
os resultados, inclusive quando aplicado ruídos para dificultar a performance. Assim, é
notável que o modelo Wav2Vec2 é mais adaptável para sistemas comerciais por ter um
melhor desempenho mesmo treinando com poucos dados e por ser menos complexo na
quantidade de parâmetros treináveis.

Palavras-chave: Reconhecimento de fala. DeepSpeech2. Wav2Vec2. Transformers. LSTM.
CoquiSTT. CommonVoice.





ABSTRACT

Lopes, A.A Comparative Analysis of Artificial Neural Networks for Automatic
Speech Recognition in Portuguese. 2022. 51p. Monograph (MBA in Artificial
Intelligence and Big Data) - Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos, 2022.

Automatic speech recognition is a process that aims to generate a text output from an audio
input. Artificial intelligence mechanisms have been used effectively as solutions for this task,
with different approaches based on deep neural networks. Wav2Vec2 is an architecture based
on the concepts of attention mechanisms and Transformers, while DeepSpeech2/CoquiSTT
is built using recurrent networks, LSTM and GRU. However, these architectures were
initially designed and validated in the English language. Therefore, the evaluation of
these architectures for data in Portuguese becomes relevant. For this evaluation, a public
dataset, Common Voice, and a private dataset, collected and cataloged manually, were
used. Overall, Wav2Vec2 outperformed the DeepSpeech2/CoquiSTT architecture in all
results, including when noise was applied to hinder performance. Thus, it is notable that
the Wav2Vec2 model is more adaptable to commercial systems because it performs better
even when training with few data and because it is less complex in terms of the number of
trainable parameters.

KeywordeX: Automatic Speech Recognition. ASR. DeepSpeech2. Wav2Vec2. Transform-
ers. LSTM. CoquiSTT. CommonVoice.
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1 INTRODUÇÃO

Sistemas de reconhecimento automático de fala com processamento de lingua-
gem natural é um tópico bastante antigo em Ciência da Computação e Engenharia
Elétrica (O’SHAUGHNESSY, 2008) e dependem de diversas áreas do conhecimento, como
processamento de sinais, acústica, fonologia, sintaxe, semântica e discursos (JURAFSKY;
MARTIN, 2008). A primeira máquina de reconhecimento de fala desenvolvida data da
década de 1950, mais precisamente em 1952, no Bell Labs, em que era capaz de reconhecer
quaisquer 10 dígitos de um único vocalizador (JURAFSKY; MARTIN, 2008).

Com o passar do tempo e com o poder computacional atingindo custos financeiros
cada vez menores, bem como a alta demanda comercial por clientes empresariais e
domésticos, o estudo e disponibilização de ferramentas de reconhecimento de fala se
popularizaram, em que podemos citar: geração automática de legendas em reuniões
virtuais, identificação de palavras-chave via telefone em empresas de contact center e
chatbots para melhor atendimento de clientes que navegam no seu respectivo sistema
de atendimento. Para clientes domésticos, existem vários exemplos, sendo o principal,
assistentes virtuais como a Alexa™e Google Assistente™, que possuem, principalmente,
como método entrada de dados a fala dos usuários.

Hoje existem várias técnicas para implementar um sistema de reconhecimento de
fala, sendo uma técnica bastante tradicional e usada durante um bom tempo, a Cadeia
Oculta de Markov (Hidden Markov Model) (O’SHAUGHNESSY, 2008), e também técnicas
mais contemporâneas, como o aprendizado supervisionado, que usam Deep Learning, por
meio de Redes Neurais Convolucionais (CNNs) e Redes Neurais Recorrentes (GEORGESCU
et al., 2021). Dentre as técnicas mais recentes, DeepSpeech2 (HANNUN et al., 2014)1

aplica conceitos de Redes Neurais Recorrentes e Wav2Vec2 (BAEVSKI et al., 2020) se
fundamenta na arquitetura Transformers.

Neste projeto de pesquisa foram aplicados dois modelos, DeepSpeech2 e Wav2Vec2,
para comparação da qualidade de um sistema de reconhecimento de fala em português.
Estruturalmente esses modelos são treinados em língua inglesa e, portanto, o objetivo é
medir e estudar a sua influência em outro idioma.

1.1 Questões de Pesquisa

Neste estudo espera-se que, com a comparação do modelo estruturado sobre redes
neurais artificiais usando Wav2Vec2 e o DeepSpeech2 possamos indicar o que gera melhor
precisão na transcrição dos áudios. Diante dos desafios e problemas atualmente enfrentados
1 https://github.com/mozilla/DeepSpeech
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em sistemas de reconhecimento de fala, foi elaborada a seguinte questão de pesquisa que
norteará este projeto:

Q1 “Algoritmos de redes neurais profundas que usam Transformers tem desempenho
melhor que uma aplicação que usa redes neurais recorrentes (RNNs) na transcrição de
áudios em português? Ou seja, possui taxa de erro similar ou inferior?”

Diante desta questão de pesquisa foram definidos os seguintes objetivos para o
desenvolvimento deste trabalho:

• Mapear algoritmos de redes neurais profundas na literatura, bem como analisar
ferramentas comerciais prontas que já usam esses algoritmos em busca de analisar
sua eficácia em conjunto de dados público e privado que será usado na avaliação dos
modelos.

• Comparar os desempenhos obtidos pelos algoritmos Wav2Vec2 e o DeepSpeech2.

A partir do modelo proposto espera-se que os resultados sejam mais favoráveis aos
algoritmos de redes neurais usando Transformers para o mesmo conjunto de treinamento.

No próximo capítulo, será apresentado a fundamentação teórica para desenvolvi-
mento dos modelos que serão usados. Passaremos pela definição de Redes Neurais, CNN,
RNN e Transformers.
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2 REFERENCIAL TEÓRICO

2.1 RECONHECIMENTO AUTOMÁTICO DE FALA

Reconhecimento automático de fala, ou Automatic Speech Recognition (ASR),
diz respeito a sistemas capazes de transcrever áudio em texto. Esta técnica envolve a
superação de vários desafios para ser bem executada, como ignorar o ruído nos áudios,
compreender as diversas formas de falar uma mesma palavra dependendo do interlocutor,
velocidade da narração, entonação das palavras, sotaques e qualidade do dispositivo
de gravação (CUTAJAR et al., 2013). Antes do advento do aprendizado profundo, a
construção de sistemas de reconhecimento de fala envolviam vários componentes para o
seu funcionamento ser bem executado, tais como (CUTAJAR et al., 2013):

• Modelo de linguagem, que consiste numa espécie de base de dados contendo a
distribuição de probabilidade de um conjunto de palavras. Este, ainda pode ser
utilizado como complementação hoje em dia nos modelos baseados em redes neurais
profundas.

• Extrair o Mel Frequency Cepstral Coefficient (MFCC) que consiste em um método
de extração de características dos áudios. O MFCC se inspira no ouvido humano,
onde, dado o espectro de áudio, as suas frequências são resolvidas de forma não
linear (CUTAJAR et al., 2013).

• Por fim, o Modelo Oculto de Markov, em inglês Hidden Markov Model (HMM),
usado prioritariamente como um classificador em sistemas de reconhecimento de fala,
este método consiste em encontrar a probabilidade de que um enunciado de fala fora
gerado pela pronúncia de um fonema ou palavra em particular (CUTAJAR et al.,
2013).

2.1.1 PRINCIPAIS MÉTRICAS

O desempenho do reconhecimento automático de voz pode ser mensurado com
algumas funções matemáticas, que também podem ser chamadas métricas de avaliação.
Este estudo aplica as seguintes métricas: WER (Word Error Rate) e CER (Character
Error Rate).

O WER é uma das métricas mais usadas em sistemas de reconhecimento de voz
(TEVAH, 2006). O WER calcula a quantidade de palavras inseridas (I) incorretamente,
as palavras quer foram substituídas (S) e as que foram excluídas (D) sobre a quantidade
de palavras (N), quando comparadas com a frase de referência. Essa taxa é calculada pela
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seguinte Equação 2.1:
WER = S + I + D

N
(2.1)

O CER é similar ao WER, porém este considera os caracteres ao invés das palavras.
Nesse caso, o N é o número de caracteres de referência (FENG et al., 2017). A equação
do CER é dado por 2.2:

CER = S + D + I

N
(2.2)

2.1.2 ESTADO DA ARTE

Com a adoção maciça de redes neurais profundas, logo foi percebido ser possível
a construção de sistemas de reconhecimento automático de voz utilizando apenas Redes
Neurais Profundas. Essa abordagem é também conhecida como sistemas de ponta a ponta,
“end-to-end systems”, em inglês. Assim, é possível construir um ASR somente com redes
neurais profundas. No trabalho de (GRAVES, 2012), os autores conseguem pela primeira
vez construir um sistema ponta a ponta usando Classificação Temporal Conexionista ou
Connectionist Temporal Classification (CTC). A CTC foi projetada exclusivamente para
tarefas de classificação temporal, sendo aqueles problemas onde o alinhamento entre os
dados de entrada e os dados de saídas são desconhecidos (QUINTANILHA, 2017).

Por fim, podemos citar os dois sistemas ponta a ponta que são o estado-da-arte
atualmente, Deep Speech 2 (HANNUN et al., 2014) e Wav2Vec2 (BAEVSKI et al., 2020).
Deep Speech 2 é baseado em Redes Convolucionais e Redes Recorrentes com LSTM
e Wav2Vec2 sendo fundamentado em Redes Convolucionais para extração de features,
Transformer e CTC. Ambos, não necessariamente, requerem um modelo de linguagem
para seu funcionamento pleno. Detalharemos mais estes modelos na Seção 2.3.

2.2 REDES NEURAIS ARTIFICIAIS

Redes Neurais Artificiais (RNA) podem ser consideradas um conjunto de modelos
matemáticos bioinspirados no funcionamento e estrutura das sinapses e neurônios do
cérebro (CARVALHO, 2020).

Em 1943, o neurofisiologista Warren McCulloch e o matemático Walter Pitts (MC-
CULLOCH; PITTS, 1943) criaram o primeiro modelo de um “neurônio” usando circuitos
elétricos. Este neurônio se baseava em um algoritmo de soma de entradas ponderadas por
pesos e consequentemente passadas para uma função de ativação que por fim retornava
uma saída, caso este ultrapassasse algum limiar de ativação. Já em 1958, Frank Rosenblatt
criou o Perceptron (ROSENBLATT, 1957). Um algoritmo desenvolvido para o reconheci-
mento de padrões baseado em uma rede neural simples de uma camada, em que principal
aplicabilidade é a classificação binária (KOVÁCS, 2002). Assim, o Perceptron garante
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convergência quando as classes são linearmente separáveis, o que não é o caso do problema
do XOR, que levou ao seu descrédito na década de 1960. A prova de convergência do
procedimento de aprendizado proposto por Rosenblatt é conhecida como Teorema de
Convergência do Perceptron (ROSENBLATT, 1957). Um perceptron modela um neurônio
tomando uma soma ponderada de suas entradas e enviando a saída 1 (spike) se esta soma
é maior que um determinado limiar de ativação (ROSENBLATT, 1957). A figura 4 ilustra
o Perceptron:

Figura 1 – Topologia de um Perceptron: As entradas xn são ponderadas por pesos wn,
para então serem somadas e passada para uma função de ativação, que por fim
daria uma saída conforme o limiar de ativação. Fonte:

(COMMONS, 2021)

Em 1969, Minsky e Papert lançaram o livro Perceptrons (MINSKY; PAPERT,
2017), com resultado negativo sobre a capacidade do Perceptron em resolver o problema
do XOR (ou exclusivo). A partir desse evento, as redes neurais entraram em um “inverno”
de novas publicações. Por serem desacreditas, durante 17 anos não houve muitos artigos
sobre redes neurais artificiais. Em 1986, McClelland e Rumelhart lançam o livro Parallel
Distributed Processing: Explorations in the Microstructures of Cognition
(2 volumes) (RUMELHART; MCCLELLAND; ASANUMA, 1986) (RUMELHART; MC-
CLELLAND; ASANUMA, 1987), onde relançaram a ideia do “backpropagation”, dando às
redes neurais artificiais, em teoria, o poder de resolver qualquer problema, inclusive o XOR.
A partir desse momento as redes neurais artificiais tiveram um retorno muito importante,
sendo novamente objeto de grande interesse no mundo acadêmico e na indústria.

A partir dos anos 2000, um termo que já era conhecido desde a década de 1970 se
tornou bastante robusto, o Aprendizado Profundo (GOODFELLOW; BENGIO; COUR-
VILLE, 2016) (QUINTANILHA, 2017). Este veio introduzir um novo patamar para as redes
neurais artificiais, que deixaram de ser apenas sistemas especialistas para de fato começa-
rem a aprender. Podemos elencar algumas classes de redes neurais artificiais: Multi-Layer
Perceptron; Redes Convolucionais; e Redes Recorrentes.

O Multi-Layer Perceptron (MLP) pode ser entendido como um conjunto de per-
ceptrons, com a incorporação de um algoritmo de retro-propagação de erro. Pode ser
referido também como uma rede de camadas densas. As unidades, ou nós, em uma MLP,
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são organizadas em camadas, com conexões consequentes de uma camada para outra.
Padrões de entrada são apresentados à camada de entrada e, então, estes são propagados
através das “camadas escondidas” para a camada de saída (GRAVES, 2012). As MLPs são
largamente utilizadas para reconhecimento de padrões, porém, seu uso não é recomendado
para rotulagem de sequência (GRAVES, 2012), como reconhecimento de fala. A figura 2
ilustra a estrutura de uma MLP:

Figura 2 – Topologia de uma MLP: As entradas fn são passadas para camadas posteriores
hn para ao final gerar uma saída y. A estrutura se assemelha ao Perceptron,
porém com multi-camadas. Fonte:

(WANG YIQIN LU, 2019)

Rede Neural Convolucional (CNN ou ConvNets) é uma rede neural de aprendizado
profundo. Sua concepção baseia-se em atribuir características as entradas por meio da
convolução. Assim, pode-se recuperar características locais, o que não é possível com
camadas densas. CNN são, provavelmente, a técnica de Aprendizado Profundo mais
conhecida para resolução de problemas de classificação de imagens (PONTI et al., 2017).
CNNs possuem uma estrutura hierárquica de convolução, pooling, operadores, funções de
ativação e camadas densas para classificação. Na figura 3 é possível checar a arquitetura
da LeNet-5, uma rede neural convolucional desenvolvida por (LECUN et al., 1998).

Rede Neural Recorrente (RNN) é uma classe de rede neural que usa dados se-
quenciais ou séries temporais (GRAVES, 2012). Também é considerada um algoritmo de
aprendizado profundo. Esta categoria de rede neural é comumente usada para resolver
problemas em que há relação de temporalidade entre os dados, tais como tradução auto-
mática, reconhecimento de voz, processamento de linguagem natural e outros (GRAVES,
2012).

2.2.1 REDES NEURAIS RECORRENTES

Redes neurais recorrentes foram criadas na década de 1980, caracterizada pelo uso
de dados sequenciais ou séries temporais como entrada (GRAVES, 2012). Essas redes
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Figura 3 – Topologia de uma ConvNet(LeNet-5): Uma imagem é a entrada da rede, já
escalonada em 32x32, passada para camadas de convolução para extração de
características locais, C1, essas então são passadas para uma camada de subsam-
pling, que gera mapa de caractrísticas mais específicas e tamanho menor, 14x14.
Ao fim os mapas são enviados a uma camada densa, MLP, para classificação.
Fonte:

(LECUN et al., 1998)

Figura 4 – Topologia de uma RNN: Uma RNN tem um laço de repetição na sua unidade
oculta. A sua entrada pode ser caracterizada como um conjunto de 3 categorias
de camadas: a camada de entrada x, a oculta h e a de saída o. Assim, podemos
observar que essa estrutura é replicada temporalmente, sendo o resultado da
camada h como entrada para a próxima camada. U , V e W são as matrizes de
pesos das camadas ocultas, Fonte: (FENG et al., 2017)

usam laços interativos entre os nós para guardar informação e as características geradas se
tornam uma escolha atrativa para sequências rotuladas, como NLP (Natural Language
Processing), reconhecimento de voz e escrita a mão (GRAVES, 2012). Uma importante
característica das Redes Recorrentes é que elas podem aprender correlações entre as
instâncias, diferentemente de uma Rede Neural densa (MLP) (GRAVES, 2012). Outra
característica que difere as RNNs da MLP é que as RNNs formam ciclos entre os nós, o
que são chamados “feedback neural networks”, enquanto as MLPs não formam ciclos, por
isso, são chamadas "feed forward neural networks”.
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As redes neurais recorrentes possuem o problema do desaparecimento do gradiente.
Então, em 1997, os autores (HOCHREITER; SCHMIDHUBER, 1997) introduziram uma
nova classe de RNN chamada Long Short-Term Memory (LSTM), endereçando a
solução desse problema, ou seja, onde o estado atual não pode ser predito por um estado
passado distante. (IBM, 2020a). A arquitetura de uma LSTM, basicamente, consiste em
um conjunto de sub-redes conectadas recorrentemente, isso é conhecido como “blocos
de memória”. Cada bloco possui um ou mais células de memória auto-conectadas e três
unidades multiplicadoras — a entrada, a saída e os portões de esquecimento (IBM, 2020b).

Outra variação de uma RNN é conhecida como GRU (Gated Recurrent Unit),
proposta em 2014 por (CHO et al., 2014). Assim como a LSTM, também possui uma
estrutura de portões, porém sem o cell state, sendo adicionadas de um portão de "esque-
cimento" acoplado ao portão de entrada. Assim, ao invés de tomar decisões de forma
separada, como esquecer ou adicionar uma informação, deve-se tomar essa decisão de
forma conjunta (QUINTANILHA, 2017). GRUs são consideradas mais simples e mais
rápidas de serem treinadas do que uma LSTM convencional.

2.2.2 TRANSFORMERS

Transformers é uma rede neural baseada no mecanismo de atenção. O mecanismo
de atenção permite que o modelo olhe diretamente e com base no estado de qualquer ponto
anterior da sequência. A camada de atenção tem acesso a todos os estados anteriores e
os pondera de acordo com alguma medida de relevância aprendida para o token atual,
fornecendo informações mais claras sobre tokens relacionados distantes. Inicialmente,
Transformers foi publicada no artigo “Attention is All You Need” (VASWANI et al., 2017).
Neste estudo foi demonstrado que esta rede neural conseguiu superar o estado-da-arte
em tradução de inglês para alemão e inglês para francês. Este marco foi atingido com um
tempo de treinamento bem menor em relação a outros modelos de redes neurais profundas,
principalmente, aqueles que utilizavam RNN. Isso foi alcançado por paralelização com 8
GPUs.

Um problema comum no modelo anterior, baseado em atenção e redes neurais
recorrentes, é sua intrínseca natureza sequencial, onde cada entrada e saída gera um estado
escondido (“hidden state”) para cada entrada e saída anterior (VASWANI et al., 2017).
Assim, o treinamento pode durar bastante tempo e não usar eficientemente as GPUs e
TPUs, perdendo-se assim o grande poder de paralelização que esses modelos entregam e
aumentando consideravelmente o tempo de treinamento.

A arquitetura de uma rede neural do tipo Transformer pode ser dividida da seguinte
maneira (VASWANI et al., 2017), conforme apresentando na Figura 5:

• Input Embedding e Positional Encoding: A entrada da rede Transformers
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Figura 5 – Arquitetura do modelo Transformers. A figura está separada em duas grandes
camadas, a esquerda o Encoder, e a direita o Decoder. O encoder se preocupa
em processar a sequência de entrada em uma representação contínua, e o
Decoder processa essa representação para uma única saída. Fonte: (VASWANI
et al., 2017)

precisa ser vetorizada, ou seja, transformar os dados, que podem ser de diversos
formatos, em um vetor de números. Aliado a isso, é necessário passar a posição de
cada item no vetor, isso se dá pela entrada ser totalmente paralelizada, ou seja, todos
os dados são processados de uma única vez. Assim é necessário saber qual a ordem
original em que os dados foram passados. No citado artigo é usado seno e coseno
para representar as posições das sequências.

• Multi-Head Attention: Este módulo computa o mecanismo de atenção diversas
vezes em paralelo. Cada uma dessas repetições é chamada de “Attention Head”.
O módulo de atenção separa seus parâmetros em Queries, Chaves e Valores de
várias formas e passa cada um para uma “Cabeça (Head)” separada. Após todos os
cálculos, tudo é agrupado para produzir uma pontuação de atenção. Isso é chamado
“Multi-Head Attention” e dá à rede Transformer um grande poder de paralelização e
de reconhecimento de várias “nuances” nos dados de entrada.
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• Feed Forward Neural Network: Os vetores de atenção devem ser passados para
uma rede neural densa para serem convertidos em um único vetor para ser consumido
pela próxima camada de encoder ou decoder. Cada vetor é totalmente independente
do outro, o que permite paralelização.

• Masked Multi-Head Attention: Similar ao módulo “Multi-Head Attention”, este
aplica um vetor de atenção a cada sequência, porém mascara as sequências que apa-
recem mais tarde, fazendo assim que a rede não precise processá-las posteriormente.

2.3 APLICAÇÃO DAS REDES NEURAIS NO RECONHECIMENTO DE VOZ

Nesta seção são apresentados os trabalhos relacionados com o tema proposto, no
que se refere aos processos de construção de uma solução de reconhecimento de voz no
contexto de Redes Neurais Profundas usando um conjunto de dados em português do
Brasil. Assim, elenco trabalhos que abordam reconhecimento de fala usando Redes Neurais
Recorrentes com LSTM, como a solução encontrada no Deep Speech, e soluções que usam
Transformers, com o Wav2Vec2.

No trabalho (GRIS et al., 2021) é demonstrado o uso do Wav2Vec2 para a construção
de uma solução de reconhecimento de voz estado-da-arte, conseguindo 11.95% de WER sem
o uso de modelo de linguagem. O Wav2Vec2 foi lançado por um time de pesquisadores do
Facebook. Este modelo tem sua arquitetura baseada em Transformers, trabalhando ponta-
a-ponta, ou seja, somente redes neurais para realizar o processo. O modelo foi inspirado nos
trabalhos antecessores do Wav2Vec (SCHNEIDER et al., 2019) e Vq-Wav2vec (BAEVSKI
et al., 2020). Este modelo foi treinado usando uma corpus multi-língua, o que, segundo os
autores, teve uma performance superior a um modelo treinado apenas com uma corpora
em português. O modelo é muito robusto, porém, sua inferência em CPU é bem inferior a
GPU. Outro ponto negativo é que mesmo tendo uma WER relativamente baixa, algumas
palavras vêm com alguns caracteres errados, o que pode ser melhorado com um modelo de
linguagem para um contexto específico.

Em (KANDA et al., 2021) é apresentada a construção de uma rede neural ponta-
a-ponta baseada em Transformers para reconhecimento de voz no idioma inglês. Neste
estudo, os autores exemplificam como adaptaram uma rede LSTM para poder ser usada
como Transformers. Este trabalho é importante devido à demonstração de como adaptar
uma rede neural LSTM para Transformers. Demonstrando a eficiência dessa arquitetura
em melhorar o resultado do reconhecimento de voz.

Em (HANNUN et al., 2014) é demonstrado pela primeira vez o Deep Speech, onde
os autores apresentam a ferramenta, informam um resultado de Word Error Rate (WER)
de 16% no idioma inglês usando apenas rede neurais recorrentes bem otimizadas e treinadas
em GPU. No trabalho de (QUINTANILHA, 2017), os autores usam uma rede baseada
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no Deep Speech para construir uma solução de reconhecimento de voz. Os autores fazem
diversos experimentos na construção da rede, ajustando os hiper-parâmetros, variando
o número de camadas e aplicando diversos métodos de regularização. Nos seus testes,
conseguiram uma taxa de erro de caractere de 25,13%, que segundo o autor é 11% maior
que em sistemas comerciais mensurados a época.

No trabalho de (RODRIGUES; PINHEIRO, 2020), os autores constroem uma
rede neural profunda simplificando a arquitetura do Deep Speech, para ser possível um
treinamento mais rápido. Neste trabalho utilizam a base de áudios aberta e validada da
Mozilla, Common Voice que estava com tamanho de 750 MB. A última versão desta base
de dados, “2021-07”, possui pouco mais de 3 GB. Os resultados foram satisfatórios para a
rede reconhecer palavras simples, como “não” e “foi”, porém, não atingiu bons resultados
nos vários testes propostos no trabalho, tendo uma taxa de WER superior a 100% em
vários cenários. Este trabalho é importante para identificar possíveis pontos de melhoria
na criação das redes neurais para ASR que este projeto usará.

Com o Aprendizado Profundo foi verificado um salto expressivo na construção de
sistemas de reconhecimento de fala robustos, diminuindo os componentes necessários para
se produzir e treinar. Nesse contexto, podemos destacar os modelos baseados em redes
neurais profundas, como o DeepSpeech e o Wav2Vec2, que trazem modelos ponta-a-ponta,
mais fáceis de treinar e com resultados estado-da-arte quando comparados com os sistemas
de reconhecimento de fala tradicionais, como os baseados em Cadeias Ocultas de Markov
com modelos de linguagens. Assim, este trabalho apresenta uma implementação de ambos
os modelos citados, fazendo uma comparação de desempenho no treinamento e inferência
após os modelos treinados. Os modelos usarão checkpoints de outros modelos já treinados,
fazendo assim um fine-tunning nesses, para garantir um melhor desempenho ao final do
teste. O modelo de avaliação de ambos será o mesmo, o CommonVoice da Mozila na versão
"2021-07", e a inferência após treinados usará uma base de áudios limitada a um contexto
de assistente pessoal voltado para vendas.

No próximo capítulo, será aprofundado as técnicas desenvolvidas na implementação
dos modelos Wav2Vec2 e DeepSpeech2/CoquiSTT. Descrição das Redes Neurais utilizadas,
bem como os córpus usados nos treinamentos.
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3 DESENVOLVIMENTO

3.1 CONSIDERAÇÕES INICIAIS

Este capítulo visa apresentar o processo de implementação dos dois modelos citados,
através do treinamento de ambas as redes neurais artificiais. Esta análise comparará as
duas redes quanto ao desempenho na tarefa proposta, reconhecimento automático de fala.
Assim como comparar a taxa de erro (WER e CER) e a loss (CTC loss) no conjunto
de validação e teste do córpus Common Voice e explicar as vantagens e desvantagens na
utilização de ambas.

Também foi levantado uma base de áudios própria no domínio da empresa da qual
este autor presta serviço. Essa base refere-se a um contexto de atendimento automático
através de ligações telefônicas feitas para uma central de clínica de saúde e através da
captação de áudio de voluntários em um aplicativo de mensagens. Com isso, pretende-se
usá-la para validação das duas redes, bem como aplicação de ruídos para verificar se o
desempenho da rede continua satisfatório.

3.2 BASE DE DADOS - COMMON VOICE 8.0

Para este trabalho foi utilizado o córpus de áudios Common Voice (CV), na versão
8, no escopo de treinamento, validação e teste. O córpus Common Voice foi desenvolvido
pela empresa Mozilla, visando avançar o campo do reconhecimento automático de fala
para idiomas com poucos recursos, ou seja, que não possuam um córpus satisfatório para
treinamento de modelos para esta tarefa. A empresa disponibiliza uma plataforma aberta
para que pessoas do mundo todo possam contribuir. Estas contribuições podem ser feitas
enviando áudios de transcrições informadas pela plataforma, ou validando a transcrição
de áudios enviados por outros usuários (ARDILA et al., 2020).

A última versão do CV possui mais de 13 mil horas de horas gravadas e mais de 11
mil horas validadas em 76 idiomas. Este trabalho usa o córpus em português, com 130
horas gravadas e 112 horas validadas.

O histograma desta base quanto a estratificação por gênero e idade podem ser
conferidas nas Figuras 6 e 7, respectivamente. Pode-se observar um desbalanceamento
em relação ao sexo masculino, representando 76% da base, enquanto o sexo feminino é
representado por apenas 4%.

O CV já dispõe de uma divisão de bases de treinamento, validação e teste, re-
presentada pelos arquivos "train.tsv", "dev.tsv"e "test.tsv". Para os experimentos, será
considerada essa divisão.
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Figura 6 – Base dividida por gênero. A seleção de gênero não é obrigatória, deixando
alguns registros em branco.

Figura 7 – Base dividida por idade. A seleção de idade não é obrigatória, deixando alguns
registros em branco.

3.2.1 PRÉ-PROCESSAMENTO

Devido a uma particularidade nas versões 7 e 8 do CV, alguns áudios não estão em
48Khz, como definido na documentação e, assim, precisam ser redimensionados para a
frequência esperada. O fato de ter áudios em frequências diferentes não é necessariamente
um problema para treinamento em redes neurais, já que esse pode ser considerado um
comportamento de data-augmentation. No entanto, por questão de padronização, foi
necessário ser executado um script em toda a base para checar a frequência e, caso
necessário, fazer a mudança para 48Khz.

Outro ponto de limpeza realizado foi fazer algumas mudanças nas transcrições para
remover caracteres que não façam diferença nos fonemas. Como, por exemplo, o trema,
crase, pontos de exclamação e interrogação, vírgulas, pontos, etc.
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3.3 AMBIENTE DE TREINAMENTO

O ambiente de treinamento trata-se de uma instância no Google Cloud Platform
(GCP). O servidor em questão possui as configurações informadas na Tabela 1.

Tabela 1 – Especificações do ambiente de treinamento

Especificações
CPU 8 vCPU Intel 2.8 Ghz
RAM 16 GB
GPU NVIDIA Tesla T4 16 GB
SO Ubuntu 18.04.2 LTS

3.4 EXPERIMENTO 1: COQUI STT

Como já mencionado no capítulo 2, utilizaremos o CoquiSTT para a validação da
arquitetura, pois este é um bifurcação do DeepSpeech2, e continua tendo atualizações
de erros e adição de melhorias, o que não foi constatado na base de código do DeepS-
peech2. A sua arquitetura é basicamente a mesma do DeepSpeech2. A arquitetura do
DeepSpeech2/CoquiSTT pode ser verificada na figura 8.

Figura 8 – Arquitetura padrão do DeepSpeech2/CoquiSTT. O áudio de entrada é passado
por uma camada de pré-processamento, onde são aplicados algumas técnicas
de aumentação de dados. A próxima camada é gerado seu espectrograma
para extração de características através de 2-3 camadas de CNN. 3-7 bi-uni
direcionais camadas de LSTM/GRU. Mais uma camada de CNN. 1-2 camadas
densas. É aplicada a CTC Loss ao final.

1

Para o treinamento com o CoquiSTT foi utilizado uma imagem docker da NVIDIA
com a versão do driver CUDA compatível, pois este é suportado apenas até o CUDA 10 e
CuDNN 7.6, devido à utilização do Tensorflow na versão 1.15.4. Nesta imagem docker,
o Python instalado está na versão 3.7. Os comandos necessários para treinamento, está
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em um shell script no github.2. Os parâmetros de treinamento podem ser verificados na
Tabela 2.

Tabela 2 – Parâmetros de treinamento CoquiSTT

Treinamento
Epochs 500
steps 100
optmizer Stochastic Gradient Descent with Momentum optimizer
learning_rate 0.001
train_batch_size 100
dev_batch_size 100
train_cudnn true
automatic_mixed_precision true

É necessário realizar o download do CV para o servidor, descompactar e pôr em
uma pasta visível a imagem docker. Para o treinamento com 500 épocas, foi necessário
cerca de 5 horas para completar, e mais 45 minutos para validação no conjunto de testes.

3.5 EXPERIMENTO 2: WAV2VEC2

Para este experimento foi efetuado um fine-tuning do modelo “facebook/wav2vec2-
xls-r-300m”3 para a tarefa de reconhecimento de fala. Este modelo já foi pré-treinado com
436h de áudios não rotulados a partir de diversas bases de dados, como VoxPopuli, MLS,
CommonVoice, BABEL, e VoxLingua107. Estas bases possuem áudios em 128 idiomas
diferentes. Este modelo possui 300 milhões de parâmetros. O fluxograma de trabalho do
Wav2vec pode ser verificado na Figura 10.

Não foi necessário utilizar a imagem docker da NVIDIA aqui, pois pode-se usar
as versões mais recentes dos softwares. A versão do Python utilizado foi a 3.9. Os dri-
vers da NVIDIA devem ser instalados manualmente, usado CUDA 11 com drivers na
versão 546. Para utilização do Common Voice não foi necessário realizar o download por
meio do site, como efetuado no experimento 1. Para este caso, foi utilizado o pacote
"transformers.dataset"para realizar o seu uso.

Os scripts de treinamento e avaliação foram desenvolvidos a partir da bifurcação
do projeto do (GROSMAN, 2022). Neste projeto está estruturado uma forma eficaz de
fazer o treinamento e gerar os resultados de avaliação. Sendo implementado a métrica
CER e WER em lote, necessário para o meu caso de uso. Este projeto pode ser acessado a
partir do link do GitHub.4.

2 https://github.com/tonyalves/coquistt-trainer
3 https://huggingface.co/facebook/wav2vec2-xls-r-300m
4 https://github.com/tonyalves/huggingsound
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Tabela 3 – Parâmetros de treinamento Wav2Vec2
Treinamento
epochs 50
total_train_batch_size 32
optmizer Adam with betas=(0.9,0.999) and epsilon=1e-08
learning_rate 7.5e-05
train_batch_size 8
eval_batch_size 8
gradient_accumulation_steps 4
lr_scheduler_type linear
lr_scheduler_warmup_steps 2000
mixed_precision_training Native AMP

O tempo de treinamento superou 48 horas para executar 50 épocas, e mais 5 horas
para executar a validação no conjunto de testes. Os parâmetros de treinamento para essa
rede, podem ser conferidas na Tabela 3.

3.6 CÓRPUS PRIVADO

Um base de áudios específica de negócio foi construída no decorrer deste trabalho.
Essa base consiste em áudios referentes a uma central de atendimento especializada em
atendimento de clientes de uma clínica médica e cobrança automática de faturas em atraso.

Esta base foi construída de duas formas: por um sistema automatizado integrado
ao software Telegram, um "bot", onde os usuários eram apresentados a uma frase, e então
estes enviavam os áudios correspondentes ao texto visualizado. Este sistema permitia ao
usuário validar se o áudio estava condizente e, caso contrário, poderia enviar novamente o
áudio ou cancelar a operação. Esta aplicação foi inspirada no modelo de funcionamento de
captura de áudios do Common Voice. Após o levantamento destes áudios, uma segunda
etapa de validação era verificada por terceiros se os áudios realmente correspondiam com
os textos passados.

Os usuários concordaram em ceder os áudios para esta pesquisa e os tornassem
públicos, porém não foi obtido uma quantidade significativa de áudios. Ao todo foram 100
áudios validados, totalizando 10 minutos de áudio validado.

Outra fonte de dados foi desenvolvida a partir de análise de ligações telefônicas,
de modo a capturar as respostas dos clientes ao sistema de cobrança eletrônica. Estes
dados foram capturados para anonimizar os interlocutores e os dados sensíveis que possam
ser informados por telefone. Após a coleta dessas gravações foi desenvolvido um sistema
para identificar apenas a parte onde o cliente fala. Para isso as gravações tiveram que
ser capturadas no modo estéreo, e o sistema desenvolvido foi responsável por processar
apenas o canal de voz referente ao cliente, remover os silêncios e dividir em sub-áudios.
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Em um segundo momento, os sub-áudios extraídos foram processados por um sistema de
reconhecimento de fala automático comercial para serem geradas as suas transcrições.

Após gerada as transcrições foi efetuado um trabalho manual de validação, de
modo a checar se as transcrições estavam condizentes e efetuar correções nos textos, caso
necessário. Como esta é uma etapa bastante demorada, o tamanho do córpus gerado foi
reduzido para 200 áudios. Após a validação foi obtido um total de 100 áudios validados.

3.6.1 APLICAÇÃO DE RUÍDO

Foi aplicado ruídos nesta base para que se possa validar a inferência no melhor
modelo. O ruído aplicado foi baseado no Projeto Voices5. Este projeto montou um conjunto
de áudios de vários sons ambientes, de várias fontes de entrada diferentes, para serem
usados para aumentação de dados em tarefas de reconhecimento de fala.

Assim, foi escolhido alguns áudios desse conjunto de dados, e aplicado de forma
aleatórios nesta base. O método utilizado foi através do PyTorch6. Foi aplicado o ruído
somando os tensores do áudio da base com o áudio do ruído, seguindo a técnica Signal-
to-Noise Ratio (SNR)7. De modo até um áudio inteligível, foi feito um trabalho de, após
aplicar o ruído, ouvi-lo e checar se um humano conseguiria entender. Ao conseguir o
entendimento, então os parâmetros de ruídos eram aplicados ao restante dos áudios para
treinamento na rede neural.

O processo para aplicação de ruído na base pode ser conferido neste link: https://
colab.research.google.com/drive/1Bq9t2AggkjrLlitcvPU7LJYVY00nWMxI?usp=sharing

5 https://iqtlabs.github.io/voices/Lab41-SRI-VOiCESREADME
6 https://pytorch.org/audio/main/tutorials/audiodataaugmentationtutorial.html
7 https://en.wikipedia.org/wiki/Signal-to-noiseratio

https://colab.research.google.com/drive/1Bq9t2AggkjrLlitcvPU7LJYVY00nWMxI?usp=sharing
https://colab.research.google.com/drive/1Bq9t2AggkjrLlitcvPU7LJYVY00nWMxI?usp=sharing
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4 RESULTADOS

Neste capítulo são apresentados os resultados de ambas as redes implementadas para
o conjunto Common Voice, assim como o córpus gerado e comparações das performances
entre os modelos. Os resultados são compostos por taxas de predições, WER e CER, dos
melhores e piores resultados, assim como resultados médios. Também é disponibilizado
gráficos da função de perda pela quantidade de épocas no conjunto de validação durante a
etapa de treinamento.

4.1 COQUI STT

Após vários experimentos com configurações diferentes, a melhor configuração de
parâmetros conseguiu os seguintes resultados no conjunto de testes do Common Voice
WER: 0,96 (96%), CER: 0,50 (50%) e loss: 70,96. No entanto, os outros experimentos
tiveram resultados bem parecidos a partir de 100 épocas.

Um resumo das predições pode ser observado na Tabela 4. O gráfico da loss pode
ser conferido na figura 9.

Com esses resultados observa-se que o CoquiSTT não atingiu um desempenho
satisfatório nesta tarefa. Isso pode ser creditado ao fato do conjunto de treinamento ser
relativamente pequeno. Há modelos treinados para o idioma inglês em que o WER fica
abaixo dos 4%, porém o conjunto de treinamento possui 1700h (COQUI, ), algo bem
distante do conjunto de treinamento usado neste experimento, que possui menos de 100h
de áudios.

Tabela 4 – Resumo dos resultados CoquiSTT
Melhor WER
Frase Predição WER CER
malacacheta malacacheta 0,00 0,00
caldeirão grande caldeirão grande 0,00 0,00
bacabal bacabal 0,00 0,00
WER Médio
Frase Predição WER CER
estrelas no calor do dia guerra fome e doença strelas pocavartantia era formnnhtons 1,00 0,48
eu fugi sem dizer nada sobre o que aconteceu e vogisemndizerravras sou quiconi sê 1,00 0,52
uma pessoa andando de caiaque em uma pequena cachoeira mapesindangicagonqunma piquimecachuina 1,00 0,55
o sujeito escorregou para a multidão e se perdeu osorjeti coregoparamuridãtidarde 1,00 0,52
Pior WER
Frase Predição WER CER
caçapava caj amarn 2,00 0,28
firefox tiar farratrariter micatra 3,00 3,28
queimados que maco s 3,00 0,33
ananindeua araem de a 3,00 0,50
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Figura 9 – No eixo y, a taxa de perda no conjunto de validação, usando a CTC Loss. No
eixo x, a época. Treinada por 50 épocas.

4.2 WAV2VEC2

Após cerca de 48h de treinamento, com os hiper-parâmetros ajustados de acordo
como mencionado anteriormente, os resultados seguiram da seguinte forma: WER: 0.13
(13,5%), CER: 0.038 (3,8%) e Loss 0,15. Os resultados podem ser verificados em https:
//huggingface.co/tonyalves/output. Devido ao resultado bastante superior em relação ao
primeiro modelo, não foi testado novas configurações de hiper-parâmetros. A tabela 5
mostra alguns exemplos de inferência no conjunto de teste do Common Voice.

Figura 10 – Fluxograma do desenvolvimento do Wav2Vec2. Foi juntado várias bases de
áudios não rotulados, aplicados no modelo Wav2vec2 e por fim, descrição
das possíveis tarefas que podem ser realizadas a partir deste modelo, como:
Reconhecimento de fala, tradução automática e classificação de áudios

https://huggingface.co/tonyalves/output
https://huggingface.co/tonyalves/output
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Figura 11 – No eixo y, a taxa de perda no conjunto de validação, usando a CTC Loss. No
eixo x, a época. Treinada por 500 épocas.

Tabela 5 – Resumo dos resultados usando Wav2Vec2
Melhor WER
Frase Predição WER CER
estamos aqui para pedir emprestado estamos aqui para pedir emprestado 0,00 0,00
precisamos nos apressar precisamos nos apressar 0,00 0,00
este trabalho já começou este trabalho já começou 0,00 0,00
ter um plano de longo prazo ter um plano de longo prazo 0,00 0,00
nós não temos relação de sangue nós não temos relação de sangue 0,00 0,00
tudo estava sincronizado tudo estava sincronizado 0,00 0,00
projetor de tela projetor de tela 0,00 0,00
a alça da taça está quebrada a alça da taça está quebrada 0,00 0,00
WER Médio
Frase Predição WER CER
para começar ambos sabemos que eu tenho para começar amos sabemos que eu tenho 0,14 0,03
um menino louro novo joga na areia um menino louro nolo joga na areia 0,14 0,03
e nós temos que conversar o que eu acho que é tempo de paixão e nós temos que conversar que eu acho que hé tempo de paixão 0,14 0,05
o casco do navio entrou em colapso o casco do navio entrou em colaps 0,14 0,03
Pior WER
Frase Predição WER CER
ananindeua ananim deuá 2,00 0,30
itapecurumirim itapecuru mirim 2,00 0,07
anhanguera lenhao guervo 2,00 0,60
witmarsum wite marsum 2,00 0,22
baleiajubarte baleias de ubarte 3,00 0,38
nãometoque não me toque 3,00 0,20
beneditinos bené de tinos 3,00 0,36

4.3 CÓRPUS PRIVADO

O resultado obtido depois desta transformação nos áudios pode ser examinada
a seguir. A Tabela 6 mostra o resultado da primeira validação sem aplicação de ruídos,
enquanto a Tabela 7 mostra os resultados após a aplicação.

O WER deste experimento sem ruídos ficou em 23,69% e o CER em 5,08%.
No experimento aplicando ruído o resultado de WER e CER foram: 117% e 25,79%,
respectivamente. Pode-se observar que a aplicação de ruídos elevou muito as taxas de
erros, indicando que o modelo proposto não se adequa bem em ambientes muito ruidosos.
O que pode ser corrigido com mais dados de treinamento com os tipos de ruídos aplicado
e/ou aplicação desse tipo de ruídos na aumentação dos dados no pré-processamento.
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Tabela 6 – Resumo dos resultados da base de dados própria, sem ruídos, no Wav2Vec2
Melhor WER
Frase Predição WER CER
senhor não sei quem é essa moça senhor não sei quem é essa moça 0,00 0,00
sim eu posso fazer isso senhora sim eu posso fazer isso senhora 0,00 0,00
já fechei esse pagamento já fechei esse pagamento 0,00 0,00
nunca ouvi falar nunca ouvi falar 0,00 0,00
especialista em angiologia especialista em angiologia 0,00 0,00
por favor me dá um cartão da clínica por favor me dá um cartão da clínica 0,00 0,00
gostaria de saber qual o preço da consulta médica gostaria de saber qual o preço da consulta médica 0,00 0,00
WER Médio
Frase Predição WER CER
já vi que esse exame não pode ser demorado já vi que esse examenão pode ser demorado 0,22 0,10
especialista em cirurgia pediátrica especialista em sirurgia pediátrica 0,25 0,10
especialista em medicina intensiva especialista e medicina intensiva 0,25 0,11
especialista em cirurgia torácica especialista em cirurgia torássica 0,25 0,12
nefrologia me lembra açúcar nefrologia me lembra açuca 0,25 0,13
o fonoaudiólogo é simpático com os ouvidos o fon audiólogo é simpático com os ouvidos 0,29 0,02
olha lá quem vem é o gastroenterologista olha lá quem vem é o gastro enterologista 0,29 0,03
Pior WER
Frase Predição WER CER
a ordontia é um ortodontista enjaulado a ordontia é um otor don tista enjaaulado 0,67 0,13
olha lá quem vem é o gastroenterologista olhe lá quem venha o gasto imperalojista 0,71 0,28
especialista em clínica médica sfez à lista em clínica médica 0,75 0,20
nunca vi um periodontista nunca hvia um périoo dantista 0,75 0,24
uma prótese precisa de remendos uma protas e preces a de remendos 0,80 0,16
nem sou eu quem tá devendo aquilo nem soei o que tadever naquilo 0,86 0,33
especialista em geriatria pecialista engery atria 1,00 0,24

Tabela 7 – Resumo dos resultados da base de dados própria, com ruídos, no Wav2Vec2
Melhor WER
Frase Predição WER CER
especialista em pneumologia especialista em pneumologia 0,00 0,00
especialista em cardiologia especialista em cardiologia 0,00 0,00
sim sou eu pode falar sim sou eu pode falar 0,00 0,00
também não entendo o que é errado nisso também não entendo que é errado nisso 0,13 0,05
não reconheço nada do que é isso não raiconheco nada do que é isso 0,14 0,09
não sei quem é que está falando não sei quem é quem está falando 0,14 0,03
sim eu posso fazer isso senhora sim eu posso fazer isso senhor 0,17 0,03
WER Médio
Frase Predição WER CER
nunca vi um periodontista nunca vi um terde olgundiske 0,50 0,40
por favor me dá um cartão da clínica o popvo me dar um cartão da fina 0,50 0,36
especialista em medicina intensiva especialista é umadesin intensiva 0,50 0,21
especialista em cirurgia torácica especialista em sirugia tarática 0,50 0,12
residência médica e título de especialista residência médica enti ide especialista 0,50 0,17
talvez o acaso vá me proteger talvez o acaso vamo protegir 0,50 0,14
residência médica e título de especialista residência mégica e titile de espacialista 0,50 0,12
gostaria de saber qual o preço da consulta médica gostaria de saber qual os prês so da feso cement 0,56 0,37
Pior WER
Frase Predição WER CER
especialista em clínica médica especalistenteinicomédi 1,00 0,40
especialista em ortopedia e traumatologia etatialistetatatiatal matologia 1,00 0,49
certo já vi esse filme anteriormente saco já desco se eu me atariamente 1,00 0,47
especialista em genética médica pessoalista engenéti camédi 1,00 0,35
especialista em alergia e imunologia es pasados em ala sria e u manaerofi 1,20 0,56
especialista em neurocirurgia espéciarista e neuro siridia 1,33 0,28
especialista em otorrinolaringologia especialistas não torni no lar em bologia 2,00 0,36
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4.4 VANTAGENS E DESVANTAGENS - COMPARAÇÃO DE DESEMPENHO

Como observado pelo resultado dos experimentos, o modelo Wav2vec2 se mostrou
bastante superior ao modelo baseado no DeepSpeech2, CoquiSTT. No decorrer do de-
senvolvimento deste trabalho, analisando trabalhos publicados sobre esse tema, pode ser
verificado que a quantidade de dados é mais importante para redes conforme o DeepSpe-
ech2. Pois, essa rede usa apenas camadas convolucionais para extração de características e
LSTM e GRU para processar as sequências de entrada. Não se equipara com a rede do
Wav2vec2 devido esta ser pré-treinada com centenas de horas de áudios não rotulados. A
quantidade de dados com suas características extraídas previamente, melhoram expressiva
quando é feito o fine-tuning para a tarefa de reconhecimento automático de fala.

Mesmo com a visível superioridade do modelo baseado em Transformers, Wav2vec2,
tem que ser considerado o tempo de treinamento que supera bastante ao tempo do modelo
CoquiSTT. Usando o córpus Common Voice, de cerca de 100h de áudios, o modelo
Wav2vec2 levou cerca de 48h para terminar todo o treinamento com 50 épocas, e quase 4
horas para realizar a validação no conjunto de teste. Enquanto o CoquiSTT levou apenas
4 horas para rodar 500 épocas, e mais 40 minutos para rodar a validação no conjunto de
testes.

Outro ponto a ser considerado ao usar o modelo Wav2Vec2 em produção, é a sua
alta latência em CPU. Esta limitação fica ainda mais evidente quando são realizadas
várias requisições simultâneas ao serviço. Nos testes executados no servidor mencionado
anteriormente, sem a adição da placa de vídeo, ao lidar com 10 requisições simultâneas,
foi observado em média uma latência de 10 segundos para cada 3 segundos de áudio
enviado. Com o uso da placa de vídeo com CUDA, essa latência foi diminuída para 100
milissegundos. Isso deve-se ao fato da rede Wav2Vec2 ter uma quantidade de parâmetros
relativamente elevada, sendo a rede testada com 300 milhões de parâmetros.

Esta situação não foi observada de maneira tão expressiva quando comparada ao
modelo CoquiSTT. Por esta ter uma estrutura relativamente reduzida, tanto o seu processo
de treinamento como de inferência são bem rápidos em CPU, mas que conseguem um
desempenho bem melhor quando executados em GPU. O CoquiSTT/DeepSpeech2 usam a
versão 1.XX do Tensorflow, obrigando a usar a GPU com drivers desatualizados e CUDA
10. Não se pode usar versões mais recentes devido à incompatibilidade com o Tensorflow
nesta versão.

O tamanho dos modelos difere muito. O modelo gerado a partir do CoquiSTT gira
em torno de 100 MB, enquanto o modelo gerado do Wav2Vec2 possui em torno de 1.8 GB.
O que neste caso, inviabiliza um início rápido do modelo para inferência e aproveitar das
tecnologia “serverless” dos provedores de nuvem.
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5 CONCLUSÃO

Wav2Vec2 se mostrou bastante robusto quanto ao desempenho apresentado, mesmo
com uma base de áudios relativamente pequena, em relação a mesma em inglês, atingindo
resultado comercialmente viável. Todo esse desempenho pode ser creditado ao processo de
pré-treinamento que o modelo passou ao ser treinado com centenas de horas de áudios
não rotulados, juntando isso ao modelo de Transformers, que possui uma arquitetura bem
robusta para processamento de dados de sequência para sequência. O modelo Wav2Vec2
ainda pode ser treinado para tarefas de classificação e tradução automática. Mesmo com um
resultado bastante promissor, o modelo treinado em português ainda está com desempenho
abaixo de um mesmo treinado em inglês, onde há modelos na plataforma HuggingFaces
com WER de 3.4%1. No entanto, o modelo em questão foi treinado com 960 horas de
áudios rotulados. No Brasil há projetos importantes para a construção de córpus robustos,
como o projeto Tarsila da USP2 que desenvolveu o córpus CORAA com cerca de 460 horas
de áudios validados.

O modelo Wav2Vec2 ainda pode ser melhorado por meio da adição de modelos de
linguagem. Sendo o KenLM bastante usado e possuindo uma integração relativamente
fácil no processo de inferência.

O modelo CoquiSTT/DeepSpeech2 não teve um desempenho semelhante devido a
esse ser um modelo puramente de treinamento, sem dados pré-treinados anteriormente,
o que necessitaria de muito mais horas de áudios rotulados do que as 100 horas dispo-
nibilizadas para treino. Para efeito de comparação, a CoquiSTT disponibilza modelos
treinados por ela para download, e o modelo em inglês conseguiu atingir WER de 4.5% e
CER de 1.6%3, no entanto, o treinamento foi feito com os córpus Common Voice versão 7,
LibriSpeech e LibriSpeech Multi-Língua, totalizando cerca de 47 mil horas de áudios. O
que está bastante distante da realidade de córpus em português.

Por fim, trabalhos futuros podem se aprofundar em desenvolver uma base mais
robusta de áudios rotulados. Outro ponto a ser explorado, é a adaptação do código para
usar a nova ferramenta lançada pela HuggingFaces para melhorar o tempo de treinamento
e inferência, o Optimum (https://github.com/huggingface/optimum). Esta aplicação
promete acelerar o tempo de treinamento em até 30% e o tempo de inferência em até 20%.
Com isso, um dos principais problemas sobre o Wav2Vec2 apontado neste trabalho, pode
ser amenizado com esta ferramenta. Outra comparação pertinente a ser realizada, é com o
mais novo modelo lançado pela empresa Meta, para treinamento multi-modal, ou seja, um

1 https://huggingface.co/facebook/wav2vec2-base-960h
2 https://sites.google.com/view/tarsila-c4ai
3 https://coqui.ai/english/coqui/v1.0.0-huge-vocab
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mesmo modelo para treinar tarefas de reconhecimento automático de fala, NLP e visão
computacional, o Data2Vec (https://huggingface.co/facebook/data2vec-audio-large-960h).
Este modelo superou o Wav2Vec2 em WER no conjunto de teste do LibriSpeech. Então
uma análise comparando o treinamento em português pode ser efetuada.

https://huggingface.co/facebook/data2vec-audio-large-960h
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APÊNDICE A – COLETA DE DADOS DA BASE PRIVADA

O processo de coleta de dados para a base própria foi feito de duas formas. A
primeira foi coletando as ligações em que houve interação do cliente com o sistema de
URA. Esse processo foi montado através da construção de uma consulta analítica em SQL.
Nessa consulta é calculado o tempo da ligação, o tempo em que o cliente começa falar e
quando termina e o caminho do áudio no sistema de arquivos. A partir disso, foi construído
um programa em Python para executar essa consulta, e de posse do resultado, verificar se
o áudio existe, carregar em memória, fazer um corte extraindo a parte que o cliente fala, e
então gerar um novo áudio convertido para WAVE 16Khz apenas com essa parte.

Depois dos áudios segmentados e separados em uma pasta específica, foi criado um
programa em Java para se comunicar com o serviço de reconhecimento automático de fala
atualmente em uso na empresa em que trabalho. Este programa tem o papel de carregar
os dados gerados anteriormente, mandar para o ASR comercial, recuperar a transcrição e
criar um arquivo no formato CSV contendo o caminho do arquivo de áudio e a transcrição
gerada.

Ao término desse processo, de posse do arquivo CSV, comecei o processo de ouvir
cada gravação e comparar com a transcrição gerada. Caso houvesse algum erro, então fosse
corrigido o texto gerado. Foi aplicado um processo manual de excluir as frases repetidas
várias vezes, porém deixando algumas frases repetidas com interlocutores diferentes.

O segundo processo de coleta de dados, se deu através da construção de um robô,
para o Telegram. Esse programa foi inspirado no modelo de uso da plataforma colaborativa
do Common Voice, onde os usuários são apresentados a um texto e estes tem de enviar
um áudio lendo este texto. Assim, o robô em questão, ao receber uma mensagem de
inicialização, oferece um texto e um botão solicitando o envio do áudio daquele texto.
Quando o usuário submete o arquivo de áudio, então o robô envia mais uma mensagem
perguntando se o usuário deseja confirmar o envio do áudio ou reenviá-lo, por dois botões
com essas perguntas. Caso seja confirmado, é enviado outra solicitação perguntando se há
interesse em efetuar uma nova submissão com outro texto.

Os textos gerados para esse experimento com o Telegram, foram recuperados de
um formulário para criação de URA para um serviço de clínica médica. Foram inseridos
textos gerados aleatórios com palavras de contexto médico.

Após todos os usuários terminarem com o processo de envio dos áudios, foi realizado
um processo de validação dos dados. Para isso, foi implementado um nesse robô um
formulário de verificação, onde é solicitado um áudio enviado com o texto original, então
é ouvido a gravação e checado se está condizente, se sim, então é clicado no botão de
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validação, caso contrário, é clicado no botão de invalidação.

Por fim, foi implementado a função de exportar os áudios validos para o formato
de treinamento nos modelos usados. Nesse caso, o sistema converte todos os áudios para
WAVE 16Khz e adiciona um arquivo CSV com as transcrições e local dos arquivos.



51

APÊNDICE B – APLICAÇÃO DO PROJETO E TESTE DE CARGA

O modelo resultante do treinamento com WavVec2 foi implantado comercialmente
na empresa que trabalho. Para que isso fosse possível, foi necessário a implementação de
uma solução para servir este modelo. Esta aplicação foi criada usando Python 3.9, FastAPI
0.79 e Docker. Esta aplicação recebe como entrada um áudio em formato WAV 16Khz no
corpo da requisição e retorna a respectiva transcrição no formato JSON.

Inicialmente foram feitos testes de carga para se ter conhecimento sobre a quantidade
de requisições simultâneas o servidor iria lidar, dado um tempo de resposta aceitável,
definido, com base no sistema comercial já usado na empresa, em até 3 segundos para até
10 segundos de áudio. Este experimento foi feito utilizando a aplicação Apache JMeter.
Esta aplicação permite, de forma fácil, executar testes de carga.

Foi montado um conjunto de testes para identificar o número de requisições ideal
para comportar a meta de até 3 segundos de latência. Com 100 requisições simultâneas,
observou-se um tempo médio de 3191ms com máximo de 5459ms, conforme visto na tabela
8. Este resultado não é o ideal, então foi diminuído para 80 requisições, neste experimento
ficou em média 2594ms de latência com máximo de 4269ms, conforme tabela 8. Já é um
resultado melhor que o anterior, porém as máximas acima do aceitável nos põe a testar
com menos requisições. Com 60 requisições, a latência ficou em média em 2015ms e o
máximo em 3078ms, conforme tabela 8. Por ficar bem próximo do desempenho esperado,
ficou definido um limite de até 60 requisições simultâneas para a configuração do servidor,
sendo a mesma do servidor de treinamento definido na tabela 1.

Tabela 8 – Resultado do teste de carga usando o Apache JMeter

Requisições Média Min Max Desvio Padrão
60 2015 634 3078 724.46
80 2594 463 4269 1080.73
100 3191 458 5459 1438.38
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